Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Nat Microbiol ; 9(3): 751-762, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38326571

RESUMEN

Infection with Lassa virus (LASV) can cause Lassa fever, a haemorrhagic illness with an estimated fatality rate of 29.7%, but causes no or mild symptoms in many individuals. Here, to investigate whether human genetic variation underlies the heterogeneity of LASV infection, we carried out genome-wide association studies (GWAS) as well as seroprevalence surveys, human leukocyte antigen typing and high-throughput variant functional characterization assays. We analysed Lassa fever susceptibility and fatal outcomes in 533 cases of Lassa fever and 1,986 population controls recruited over a 7 year period in Nigeria and Sierra Leone. We detected genome-wide significant variant associations with Lassa fever fatal outcomes near GRM7 and LIF in the Nigerian cohort. We also show that a haplotype bearing signatures of positive selection and overlapping LARGE1, a required LASV entry factor, is associated with decreased risk of Lassa fever in the Nigerian cohort but not in the Sierra Leone cohort. Overall, we identified variants and genes that may impact the risk of severe Lassa fever, demonstrating how GWAS can provide insight into viral pathogenesis.


Asunto(s)
Fiebre de Lassa , Humanos , Fiebre de Lassa/genética , Fiebre de Lassa/diagnóstico , Fiebre de Lassa/epidemiología , Estudio de Asociación del Genoma Completo , Estudios Seroepidemiológicos , Virus Lassa/genética , Fiebre , Genética Humana
2.
Evol Lett ; 7(6): 413-421, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38045722

RESUMEN

Egg rejection is an effective and widespread antiparasitic defense to eliminate foreign eggs from the nests of hosts of brood parasitic birds. Several lines of observational and critical experimental evidence support a role for learning by hosts in the recognition of parasitic versus own eggs; specifically, individual hosts that have had prior or current experience with brood parasitism are more likely to reject foreign eggs. Here we confirm experimentally the role of prior experience in altering subsequent egg-rejection decisions in the American robin Turdus migratorius, a free-living host species of an obligate brood parasite, the brown-headed cowbird Molothrus ater. We then model the coevolutionary trajectory of both the extent of mimicry of host eggs by parasitic eggs and the host's egg rejection thresholds in response to an increasing role of learning in egg recognition. Critically, with more learning, we see the evolution of both narrower (more discriminating) rejection thresholds in hosts and greater egg mimicry in parasites. Increasing host clutch size (number of eggs/nest) and increasing parasite load (parasitism rate) also have narrowing effects on the egg-rejection threshold. Together, these results suggest that learning from prior experience with egg rejection may play an important role in the coevolution of egg-mimetic lineages of brood parasites and the refined egg rejection defenses of hosts.

3.
Ecol Evol ; 12(1): e8489, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35127023

RESUMEN

Animals with dependent and vulnerable young need to decide where to raise their offspring to minimize ill effects of weather, competition, parasitism, and predation. These decisions have critical fitness consequences through impacting the survival of both adults and progeny. Birds routinely place their nest in specific sites, allowing species to be broadly classified based on nest location (e.g., ground- or tree-nesting). However, from 2018 to 2020, we observed 24 American robin (Turdus migratorius) nests placed not on their species-typical arboreal substrates or human-made structures but on the ground at a predator-rich commercial tree-farm in Illinois, USA. This behavior does not appear to be in response to competition and did not affect nest daily survival rate but was restricted to the early half of the breeding season. We hypothesize that ground nesting may be an adaptive response to avoid exposure and colder temperatures at sites above the ground early in the breeding season or a nonadaptive consequence of latent robin nest-placement flexibility.

4.
Biol Lett ; 17(9): 20210377, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34520683

RESUMEN

Yellow warblers (Setophaga petechia) use referential 'seet' calls to warn mates of brood parasitic brown-headed cowbirds (Molothrus ater). In response to seet calls during the day, female warblers swiftly move to sit tightly on their nests, which may prevent parasitism by physically blocking female cowbirds from inspecting and laying in the nest. However, cowbirds lay their eggs just prior to sunrise, not during daytime. We experimentally tested whether female warblers, warned by seet calls on one day, extend their anti-parasitic responses into the future by engaging in vigilance at sunrise on the next day, when parasitism may occur. As predicted, daytime seet call playbacks caused female warblers to leave their nests less often on the following morning, relative to playbacks of both their generic anti-predator calls and silent controls. Thus, referential calls do not only convey the identity or the type of threat at present but also elicit vigilance in the future to provide protection from threats during periods of heightened vulnerability.


Asunto(s)
Parásitos , Passeriformes , Pájaros Cantores , Animales , Femenino , Comportamiento de Nidificación
5.
R Soc Open Sci ; 8(1): 201615, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33614093

RESUMEN

Some hosts of avian brood parasites reduce or eliminate the costs of parasitism by removing foreign eggs from the nest (rejecter hosts). In turn, even acceptor hosts typically remove most non-egg-shaped objects from the nest, including broken shells, fallen leaves and other detritus. In search for the evolutionary origins and sensory mechanisms of egg rejection, we assessed where the potential threshold between egg recognition and nest hygiene may lie when it comes to stimulus shape. Most previous studies applied comparisons of egg-sized objects with non-continuous variation in shape. Here, instead, we used two series of three-dimensional-printed objects, designed a priori to increasingly diverge from natural eggs along two axes (width or angularity) of shape variation. As predicted, we detected transitions from mostly acceptance to mostly rejection in the nests of American robins Turdus migratorius along each of the two axes. Our methods parallel previous innovations in egg-rejection studies through the use of continuous variation in egg coloration and maculation contrast, to better understand the sensory limits and thresholds of variation in egg recognition and rejection in diverse hosts of avian brood parasites.

6.
Sci Rep ; 10(1): 3180, 2020 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-32081931

RESUMEN

Fifty patients with unexplained fever and poor outcomes presented at Irrua Specialist Teaching Hospital (ISTH) in Edo State, Nigeria, an area endemic for Lassa fever, between September 2018 - January 2019. After ruling out Lassa fever, plasma samples from these epidemiologically-linked cases were sent to the African Centre of Excellence for Genomics of Infectious Diseases (ACEGID), Redeemer's University, Ede, Osun State, Nigeria, where we carried out metagenomic sequencing which implicated yellow fever virus (YFV) as the etiology of this outbreak. Twenty-nine of the 50 samples were confirmed positive for YFV by reverse transcriptase-quantitative polymerase chain reaction (RT-qPCR), 14 of which resulted in genome assembly. Maximum likelihood phylogenetic analysis revealed that these YFV sequences formed a tightly clustered clade more closely related to sequences from Senegal than sequences from earlier Nigerian isolates, suggesting that the YFV clade responsible for this outbreak in Edo State does not descend directly from the Nigerian YFV outbreaks of the last century, but instead reflects a broader diversity and dynamics of YFV in West Africa. Here we demonstrate the power of metagenomic sequencing for identifying ongoing outbreaks and their etiologies and informing real-time public health responses, resulting in accurate and prompt disease management and control.


Asunto(s)
Sistemas de Computación , Brotes de Enfermedades , Metagenoma , Enfermedades no Diagnosticadas/epidemiología , Enfermedades no Diagnosticadas/genética , Fiebre Amarilla/epidemiología , Fiebre Amarilla/genética , Adolescente , Adulto , Niño , Preescolar , Femenino , Humanos , Funciones de Verosimilitud , Masculino , Persona de Mediana Edad , Nigeria/epidemiología , Filogenia , Enfermedades no Diagnosticadas/virología , Fiebre Amarilla/virología , Adulto Joven
7.
N Engl J Med ; 379(18): 1745-1753, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30332564

RESUMEN

During 2018, an unusual increase in Lassa fever cases occurred in Nigeria, raising concern among national and international public health agencies. We analyzed 220 Lassa virus genomes from infected patients, including 129 from the 2017-2018 transmission season, to understand the viral populations underpinning the increase. A total of 14 initial genomes from 2018 samples were generated at Redeemer's University in Nigeria, and the findings were shared with the Nigerian Center for Disease Control in real time. We found that the increase in cases was not attributable to a particular Lassa virus strain or sustained by human-to-human transmission. Instead, the data were consistent with ongoing cross-species transmission from local rodent populations. Phylogenetic analysis also revealed extensive viral diversity that was structured according to geography, with major rivers appearing to act as barriers to migration of the rodent reservoir.


Asunto(s)
Genoma Viral , Fiebre de Lassa/virología , Virus Lassa/genética , ARN Viral/análisis , Adolescente , Adulto , Animales , Teorema de Bayes , Reservorios de Enfermedades , Femenino , Variación Genética , Humanos , Fiebre de Lassa/epidemiología , Fiebre de Lassa/transmisión , Masculino , Cadenas de Markov , Persona de Mediana Edad , Nigeria/epidemiología , Filogenia , Filogeografía , Roedores , Análisis de Secuencia de ARN , Zoonosis/transmisión
8.
Sci Rep ; 8(1): 5939, 2018 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-29651117

RESUMEN

Lassa fever, a hemorrhagic fever caused by Lassa virus (LASV), is endemic in West Africa. It is difficult to distinguish febrile illnesses that are common in West Africa from Lassa fever based solely on a patient's clinical presentation. The field performance of recombinant antigen-based Lassa fever immunoassays was compared to that of quantitative polymerase chain assays (qPCRs) using samples from subjects meeting the case definition of Lassa fever presenting to Kenema Government Hospital in Sierra Leone. The recombinant Lassa virus (ReLASV) enzyme-linked immunosorbant assay (ELISA) for detection of viral antigen in blood performed with 95% sensitivity and 97% specificity using a diagnostic standard that combined results of the immunoassays and qPCR. The ReLASV rapid diagnostic test (RDT), a lateral flow immunoassay based on paired monoclonal antibodies to the Josiah strain of LASV (lineage IV), performed with 90% sensitivity and 100% specificity. ReLASV immunoassays performed better than the most robust qPCR currently available, which had 82% sensitivity and 95% specificity. The performance characteristics of recombinant antigen-based Lassa virus immunoassays indicate that they can aid in the diagnosis of LASV Infection and inform the clinical management of Lassa fever patients.


Asunto(s)
Anticuerpos Antivirales/inmunología , Antígenos Virales/aislamiento & purificación , Fiebre de Lassa/diagnóstico , Virus Lassa/aislamiento & purificación , África Occidental , Anticuerpos Antivirales/genética , Antígenos Virales/genética , Humanos , Inmunoensayo/métodos , Inmunoglobulina M/inmunología , Fiebre de Lassa/inmunología , Fiebre de Lassa/virología , Virus Lassa/inmunología , Virus Lassa/patogenicidad , Proteínas Recombinantes/genética , Proteínas Recombinantes/inmunología , Sierra Leona , Estudios de Validación como Asunto
10.
Nature ; 546(7658): 401-405, 2017 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-28538723

RESUMEN

Zika virus (ZIKV) is causing an unprecedented epidemic linked to severe congenital abnormalities. In July 2016, mosquito-borne ZIKV transmission was reported in the continental United States; since then, hundreds of locally acquired infections have been reported in Florida. To gain insights into the timing, source, and likely route(s) of ZIKV introduction, we tracked the virus from its first detection in Florida by sequencing ZIKV genomes from infected patients and Aedes aegypti mosquitoes. We show that at least 4 introductions, but potentially as many as 40, contributed to the outbreak in Florida and that local transmission is likely to have started in the spring of 2016-several months before its initial detection. By analysing surveillance and genetic data, we show that ZIKV moved among transmission zones in Miami. Our analyses show that most introductions were linked to the Caribbean, a finding corroborated by the high incidence rates and traffic volumes from the region into the Miami area. Our study provides an understanding of how ZIKV initiates transmission in new regions.


Asunto(s)
Infección por el Virus Zika/epidemiología , Infección por el Virus Zika/virología , Virus Zika/genética , Aedes/virología , Animales , Región del Caribe/epidemiología , Brotes de Enfermedades/estadística & datos numéricos , Femenino , Florida/epidemiología , Genoma Viral/genética , Humanos , Incidencia , Epidemiología Molecular , Mosquitos Vectores/virología , Virus Zika/aislamiento & purificación , Infección por el Virus Zika/transmisión
11.
Nature ; 546(7658): 411-415, 2017 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-28538734

RESUMEN

Although the recent Zika virus (ZIKV) epidemic in the Americas and its link to birth defects have attracted a great deal of attention, much remains unknown about ZIKV disease epidemiology and ZIKV evolution, in part owing to a lack of genomic data. Here we address this gap in knowledge by using multiple sequencing approaches to generate 110 ZIKV genomes from clinical and mosquito samples from 10 countries and territories, greatly expanding the observed viral genetic diversity from this outbreak. We analysed the timing and patterns of introductions into distinct geographic regions; our phylogenetic evidence suggests rapid expansion of the outbreak in Brazil and multiple introductions of outbreak strains into Puerto Rico, Honduras, Colombia, other Caribbean islands, and the continental United States. We find that ZIKV circulated undetected in multiple regions for many months before the first locally transmitted cases were confirmed, highlighting the importance of surveillance of viral infections. We identify mutations with possible functional implications for ZIKV biology and pathogenesis, as well as those that might be relevant to the effectiveness of diagnostic tests.


Asunto(s)
Filogenia , Infección por el Virus Zika/transmisión , Infección por el Virus Zika/virología , Virus Zika/genética , Virus Zika/aislamiento & purificación , Animales , Brasil/epidemiología , Colombia/epidemiología , Culicidae/virología , Brotes de Enfermedades/estadística & datos numéricos , Genoma Viral/genética , Mapeo Geográfico , Honduras/epidemiología , Humanos , Metagenoma/genética , Epidemiología Molecular , Mosquitos Vectores/virología , Mutación , Vigilancia en Salud Pública , Puerto Rico/epidemiología , Estados Unidos/epidemiología , Virus Zika/clasificación , Virus Zika/patogenicidad , Infección por el Virus Zika/diagnóstico , Infección por el Virus Zika/epidemiología
13.
BMC Genomics ; 17: 707, 2016 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-27595844

RESUMEN

BACKGROUND: Ebola virus is the causative agent of a severe syndrome in humans with a fatality rate that can approach 90 %. During infection, the host immune response is thought to become dysregulated, but the mechanisms through which this happens are not entirely understood. In this study, we analyze RNA sequencing data to determine the host response to Ebola virus infection in circulating immune cells. RESULTS: Approximately half of the 100 genes with the strongest early increases in expression were interferon-stimulated genes, such as ISG15, OAS1, IFIT2, HERC5, MX1 and DHX58. Other highly upregulated genes included cytokines CXCL11, CCL7, IL2RA, IL2R1, IL15RA, and CSF2RB, which have not been previously reported to change during Ebola virus infection. Comparing this response in two different models of exposure (intramuscular and aerosol) revealed a similar signature of infection. The strong innate response in the aerosol model was seen not only in circulating cells, but also in primary and secondary target tissues. Conversely, the innate immune response of vaccinated macaques was almost non-existent. This suggests that the innate response is a major aspect of the cellular response to Ebola virus infection in multiple tissues. CONCLUSIONS: Ebola virus causes a severe infection in humans that is associated with high mortality. The host immune response to virus infection is thought to be an important aspect leading to severe pathology, but the components of this overactive response are not well characterized. Here, we analyzed how circulating immune cells respond to the virus and found that there is a strong innate response dependent on active virus replication. This finding is in stark contrast to in vitro evidence showing a suppression of innate immune signaling, and it suggests that the strong innate response we observe in infected animals may be an important contributor to pathogenesis.


Asunto(s)
Ebolavirus/fisiología , Fiebre Hemorrágica Ebola/inmunología , Inmunidad Innata , Leucocitos Mononucleares/inmunología , Animales , Ebolavirus/patogenicidad , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica , Redes Reguladoras de Genes , Fiebre Hemorrágica Ebola/genética , Fiebre Hemorrágica Ebola/virología , Leucocitos Mononucleares/metabolismo , Macaca/virología , Ratones , Análisis de Secuencia de ARN/métodos , Replicación Viral
14.
J Infect Dis ; 214(suppl 3): S102-S109, 2016 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-27377746

RESUMEN

Containment limited the 2014 Nigerian Ebola virus (EBOV) disease outbreak to 20 reported cases and 8 fatalities. We present here clinical data and contact information for at least 19 case patients, and full-length EBOV genome sequences for 12 of the 20. The detailed contact data permits nearly complete reconstruction of the transmission tree for the outbreak. The EBOV genomic data are consistent with that tree. It confirms that there was a single source for the Nigerian infections, shows that the Nigerian EBOV lineage nests within a lineage previously seen in Liberia but is genetically distinct from it, and supports the conclusion that transmission from Nigeria to elsewhere did not occur.


Asunto(s)
Brotes de Enfermedades , Ebolavirus/genética , Genoma Viral/genética , Fiebre Hemorrágica Ebola/epidemiología , Adulto , Evolución Biológica , Ebolavirus/aislamiento & purificación , Femenino , Fiebre Hemorrágica Ebola/transmisión , Fiebre Hemorrágica Ebola/virología , Humanos , Liberia , Masculino , Persona de Mediana Edad , Nigeria/epidemiología , Filogenia , Análisis de Secuencia de ADN
15.
J Vis Exp ; (113)2016 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-27403729

RESUMEN

Here we outline a next-generation RNA sequencing protocol that enables de novo assemblies and intra-host variant calls of viral genomes collected from clinical and biological sources. The method is unbiased and universal; it uses random primers for cDNA synthesis and requires no prior knowledge of the viral sequence content. Before library construction, selective RNase H-based digestion is used to deplete unwanted RNA - including poly(rA) carrier and ribosomal RNA - from the viral RNA sample. Selective depletion improves both the data quality and the number of unique reads in viral RNA sequencing libraries. Moreover, a transposase-based 'tagmentation' step is used in the protocol as it reduces overall library construction time. The protocol has enabled rapid deep sequencing of over 600 Lassa and Ebola virus samples-including collections from both blood and tissue isolates-and is broadly applicable to other microbial genomics studies.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento , Virus ARN , Genoma Viral , ARN Viral , Análisis de Secuencia de ARN
16.
Cell ; 165(6): 1519-1529, 2016 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-27259153

RESUMEN

Although studies have identified hundreds of loci associated with human traits and diseases, pinpointing causal alleles remains difficult, particularly for non-coding variants. To address this challenge, we adapted the massively parallel reporter assay (MPRA) to identify variants that directly modulate gene expression. We applied it to 32,373 variants from 3,642 cis-expression quantitative trait loci and control regions. Detection by MPRA was strongly correlated with measures of regulatory function. We demonstrate MPRA's capabilities for pinpointing causal alleles, using it to identify 842 variants showing differential expression between alleles, including 53 well-annotated variants associated with diseases and traits. We investigated one in detail, a risk allele for ankylosing spondylitis, and provide direct evidence of a non-coding variant that alters expression of the prostaglandin EP4 receptor. These results create a resource of concrete leads and illustrate the promise of this approach for comprehensively interrogating how non-coding polymorphism shapes human biology.


Asunto(s)
Regulación de la Expresión Génica , Genes Reporteros , Enfermedades Genéticas Congénitas/genética , Técnicas Genéticas , Variación Genética , Alelos , Biblioteca de Genes , Células Hep G2 , Humanos , Sitios de Carácter Cuantitativo , Sensibilidad y Especificidad , Espondilitis Anquilosante/genética
17.
Cell ; 162(4): 738-50, 2015 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-26276630

RESUMEN

The 2013-2015 West African epidemic of Ebola virus disease (EVD) reminds us of how little is known about biosafety level 4 viruses. Like Ebola virus, Lassa virus (LASV) can cause hemorrhagic fever with high case fatality rates. We generated a genomic catalog of almost 200 LASV sequences from clinical and rodent reservoir samples. We show that whereas the 2013-2015 EVD epidemic is fueled by human-to-human transmissions, LASV infections mainly result from reservoir-to-human infections. We elucidated the spread of LASV across West Africa and show that this migration was accompanied by changes in LASV genome abundance, fatality rates, codon adaptation, and translational efficiency. By investigating intrahost evolution, we found that mutations accumulate in epitopes of viral surface proteins, suggesting selection for immune escape. This catalog will serve as a foundation for the development of vaccines and diagnostics. VIDEO ABSTRACT.


Asunto(s)
Genoma Viral , Fiebre de Lassa/virología , Virus Lassa/genética , ARN Viral/genética , África Occidental/epidemiología , Animales , Evolución Biológica , Reservorios de Enfermedades , Ebolavirus/genética , Variación Genética , Glicoproteínas/genética , Fiebre Hemorrágica Ebola/virología , Humanos , Fiebre de Lassa/epidemiología , Fiebre de Lassa/transmisión , Virus Lassa/clasificación , Virus Lassa/fisiología , Murinae/genética , Mutación , Nigeria/epidemiología , Proteínas Virales/genética , Zoonosis/epidemiología , Zoonosis/virología
18.
Cell ; 161(7): 1516-26, 2015 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-26091036

RESUMEN

The 2013-2015 Ebola virus disease (EVD) epidemic is caused by the Makona variant of Ebola virus (EBOV). Early in the epidemic, genome sequencing provided insights into virus evolution and transmission and offered important information for outbreak response. Here, we analyze sequences from 232 patients sampled over 7 months in Sierra Leone, along with 86 previously released genomes from earlier in the epidemic. We confirm sustained human-to-human transmission within Sierra Leone and find no evidence for import or export of EBOV across national borders after its initial introduction. Using high-depth replicate sequencing, we observe both host-to-host transmission and recurrent emergence of intrahost genetic variants. We trace the increasing impact of purifying selection in suppressing the accumulation of nonsynonymous mutations over time. Finally, we note changes in the mucin-like domain of EBOV glycoprotein that merit further investigation. These findings clarify the movement of EBOV within the region and describe viral evolution during prolonged human-to-human transmission.


Asunto(s)
Ebolavirus/genética , Ebolavirus/aislamiento & purificación , Genoma Viral , Fiebre Hemorrágica Ebola/epidemiología , Fiebre Hemorrágica Ebola/virología , Mutación , Evolución Biológica , Brotes de Enfermedades , Ebolavirus/clasificación , Fiebre Hemorrágica Ebola/transmisión , Humanos , Sierra Leona/epidemiología , Manejo de Especímenes
19.
PLoS Negl Trop Dis ; 9(3): e0003631, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25781465

RESUMEN

Next-generation sequencing (NGS) has the potential to transform the discovery of viruses causing unexplained acute febrile illness (UAFI) because it does not depend on culturing the pathogen or a priori knowledge of the pathogen's nucleic acid sequence. More generally, it has the potential to elucidate the complete human virome, including viruses that cause no overt symptoms of disease, but may have unrecognized immunological or developmental consequences. We have used NGS to identify RNA viruses in the blood of 195 patients with UAFI and compared them with those found in 328 apparently healthy (i.e., no overt signs of illness) control individuals, all from communities in southeastern Nigeria. Among UAFI patients, we identified the presence of nucleic acids from several well-characterized pathogenic viruses, such as HIV-1, hepatitis, and Lassa virus. In our cohort of healthy individuals, however, we detected the nucleic acids of two novel rhabdoviruses. These viruses, which we call Ekpoma virus-1 (EKV-1) and Ekpoma virus-2 (EKV-2), are highly divergent, with little identity to each other or other known viruses. The most closely related rhabdoviruses are members of the genus Tibrovirus and Bas-Congo virus (BASV), which was recently identified in an individual with symptoms resembling hemorrhagic fever. Furthermore, by conducting a serosurvey of our study cohort, we find evidence for remarkably high exposure rates to the identified rhabdoviruses. The recent discoveries of novel rhabdoviruses by multiple research groups suggest that human infection with rhabdoviruses might be common. While the prevalence and clinical significance of these viruses are currently unknown, these viruses could have previously unrecognized impacts on human health; further research to understand the immunological and developmental impact of these viruses should be explored. More generally, the identification of similar novel viruses in individuals with and without overt symptoms of disease highlights the need for a broader understanding of the human virome as efforts for viral detection and discovery advance.


Asunto(s)
ARN Viral/genética , Infecciones por Rhabdoviridae/diagnóstico , Infecciones por Rhabdoviridae/virología , Rhabdoviridae/aislamiento & purificación , Adulto , África Occidental/epidemiología , Secuencia de Bases , Estudios de Casos y Controles , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , Nigeria/epidemiología , Virus ARN/clasificación , Virus ARN/genética , Virus ARN/aislamiento & purificación , Rhabdoviridae/clasificación , Rhabdoviridae/genética , Infecciones por Rhabdoviridae/epidemiología , Análisis de Secuencia de ARN
20.
Genome Biol ; 15(11): 519, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25403361

RESUMEN

We have developed a robust RNA sequencing method for generating complete de novo assemblies with intra-host variant calls of Lassa and Ebola virus genomes in clinical and biological samples. Our method uses targeted RNase H-based digestion to remove contaminating poly(rA) carrier and ribosomal RNA. This depletion step improves both the quality of data and quantity of informative reads in unbiased total RNA sequencing libraries. We have also developed a hybrid-selection protocol to further enrich the viral content of sequencing libraries. These protocols have enabled rapid deep sequencing of both Lassa and Ebola virus and are broadly applicable to other viral genomics studies.


Asunto(s)
Ebolavirus/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Virus Lassa/genética , Fiebre Hemorrágica Ebola/genética , Fiebre Hemorrágica Ebola/virología , Humanos , Fiebre de Lassa/genética , Fiebre de Lassa/virología , ARN Viral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...